Heilbronn ’ S Conjecture on Waring ’ S Number ( Mod P )

نویسنده

  • CHRISTOPHER PINNER
چکیده

Let p be a prime k|p−1, t = (p−1)/k and γ(k, p) be the minimal value of s such that every number is a sum of s k-th powers (mod p). We prove Heilbronn’s conjecture that γ(k, p) k1/2 for t > 2. More generally we show that for any positive integer q, γ(k, p) ≤ C(q)k1/q for φ(t) ≥ q. A comparable lower bound is also given. We also establish exact values for γ(k, p) when φ(t) = 2. For instance, when t = 3, γ(k, p) = a+ b− 1 where a > b > 0 are the unique integers with a2 + b2 + ab = p, and when t = 4, γ(k, p) = a− 1 where a > b > 0 are the unique integers with a2 + b2 = p.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sum - Product Estimates Applied to Waring ’ S Problem Mod

Let γ(k, p) denote Waring’s number (mod p) and δ(k, p) denote the ± Waring’s number (mod p). We use sum-product estimates for |nA| and |nA − nA|, following the method of Glibichuk and Konyagin, to estimate γ(k, p) and δ(k, p). In particular, we obtain explicit numerical constants in the Heilbronn upper bounds: γ(k, p) ≤ 83 k, δ(k, p) ≤ 20 k for any positive k not divisible by (p− 1)/2.

متن کامل

Restricted set addition in groups, II. A generalization of the Erdo"s-Heilbronn conjecture

In 1980, Erdős and Heilbronn posed the problem of estimating (from below) the number of sums a+b where a ∈ A and b ∈ B range over given sets A,B ⊆ Z/pZ of residues modulo a prime p, so that a 6= b. A solution was given in 1994 by Dias da Silva and Hamidoune. In 1995, Alon, Nathanson and Ruzsa developed a polynomial method that allows one to handle restrictions of the type f(a, b) 6= 0, where f ...

متن کامل

Sum-product Estimates Applied to Waring’s Problem Mod P

Let γ(k, p) denote Waring’s number (mod p) and δ(k, p) denote the ± Waring’s number (mod p). We use sum-product estimates for |nA| and |nA− nA|, following the method of Glibichuk and Konyagin, to estimate γ(k, p) and δ(k, p). In particular, we obtain explicit numerical constants in the Heilbronn upper bounds: γ(k, p) ≤ 83 k1/2, δ(k, p) ≤ 20 k1/2 for any positive k not divisible by (p− 1)/2.

متن کامل

Linear Extension of the Erdős - Heilbronn Conjecture 3

The famous Erdős-Heilbronn conjecture plays an important role in the development of additive combinatorial number theory. In 2007 Z. W. Sun made the following further conjecture (which is the linear extension of the Erdős-Heilbronn conjecture): For any finite subset A of a field F and nonzero elements a1, . . . , an of F , we have |{a1x1 + · · ·+ anxn : x1, . . . , xn ∈ A, and xi 6= xj if i 6= ...

متن کامل

On the Inverse Erdős-heilbronn Problem for Restricted Set Addition in Finite Groups

We provide a survey of results concerning both the direct and inverse problems to the Cauchy-Davenport theorem and Erdős-Heilbronn problem in Additive Combinatorics. We formulate a conjecture concerning the inverse Erdős-Heilbronn problem in nonabelian groups. We prove an inverse to the Dias da Silva-Hamidoune Theorem to Z/nZ where n is composite, and we generalize this result for nonabelian gr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009